US 2005/0005261 Al

model. This type of use applies to all accessors. A model
accessor adds no additional events.

[0238] An interface accessor of the present invention is an
accessor that provides access to implementations of inter-
faces. While the interface definition provides the details for
both static attributes and the required operations to imple-
ment an interface, the operations are implemented by model
implementations, not interface implementations. Therefore,
interface accessors provide access to static attributes from
the interface, but require a model instance to perform
operations.

[0239] An interface accessor has a one-to-one association
relationship with an interface descriptor that is the interface
descriptor for which the interface accessor provides access
to an implementation. There exists a one-to-one relationship
for each descriptor in the interface descriptor to each child
accessor in this interface accessor. An interface accessor has
a one-to-one association relationship with an interface
implementation that is the implementation of the interface.
An interface accessor has a zero-to-many aggregation rela-
tionship with interface accessors that are wholly included as
part of itself. An interface accessor has a zero-to-many
aggregation relationship with static attribute accessors that
are attribute accessors that do not require an instance in
order to be accessed. These accessors allow the value to be
retrieved but not changed. An interface accessor has a
zero-to-many aggregation relationship with operation acces-
sors that require an instance of a model instance implement-
ing this interface in order to be executed. These accessors
provide a mechanism to execute the operation.

[0240] The accessors contained in an interface accessor
provide the operations available. An interface accessor adds
no additional events.

[0241] A package accessor of the present invention is an
accessor that provides access to the various logical group-
ings of models. The root package accessor may be stored in
a well-known location, like the metamodel repository, in
order for software applications to be able to find meta-
implementation accessors and virtual implementations.

[0242] A package accessor has a one-to-one association
relationship with a package descriptor that is the package
descriptor for which the package accessor provides access to
an implementation. A package accessor has a one-to-one
association relationship with a package implementation that
is the package implementation that the interface accessor
uses to perform the action. A package accessor has a
zero-to-many association relationship with metamodel
implementations that are the metamodel accessors that are
children of this package accessor refer to the metamodel
implementations that are children of this package accessor’s
implementation. A package accessor has a zero-to-many
association relationship with package implementations that
are the package accessors that are children of this package
accessor refer to the package implementations that are
children of this package accessor’s implementation. A pack-
age accessor has a zero-to-many association relationship
with package accessors that are child package accessors
describing child package implementations of this package
accessor’s package implementation. A package accessor has
a zero-to-many association relationship with model acces-
sors (that are child model accessors describing child model
implementations of this package accessor’s package imple-

Jan. 6, 2005

mentation. A package accessor has a zero-to-many aggre-
gation relationship with attribute accessors that are the
accessors to retrieve other attributes of the package.

[0243] Package accessors are purely descriptive and pro-
vide access to other package and model accessors. A pack-
age accessor adds no additional events.

[0244] Versions are not accessed. Instead, the version of
the accessor is described using a version implementation.
This is equivalent to the descriptors in the metamodeling
layer holding a version instance describing the version of the
descriptor.

[0245] No hint accessors exist. Hints exist only in the
modeling layer. Hints capture descriptions necessary for
implementations that are not captured elsewhere. Once an
implementation exists or is accessed via an accessor, there is
no longer a need for hints.

[0246] No role accessors exist. Roles exist only in the
modeling layer. In the meta-implementation layer, interfaces
serve a similar position.

[0247] 1In one embodiment, the present invention provides
virtual implementations. Where meta-implementation
accessors serve to access a real implementation written and
compiled in source code, a virtual implementation serves as
both the meta-implementation and the “real” implementa-
tion. The virtual implementation creates a one-to-one rela-
tionship from its assembly of implementations to the
descriptors in the meta-implementation layer. Each virtual
implementation type works as part of the larger virtual
implementation to create assemblies that behave exactly like
a real implementation.

[0248] Accessors may use the assemblies of virtual imple-
mentations in exactly the same way as a real implementa-
tion. The virtual implementation assemblies behave exactly
like real implementations. The difference is that virtual
implementations are constructed (and optionally modifiable)
at runtime. No source code is written, no source code is
compiled, and no source code needs to be managed. Given
a tool which properly constructs a virtual model implemen-
tation assembly from a model descriptor (a one-to-one
mapping of each feature descriptor to a feature implemen-
tation), virtual implementations require no more effort to
create than a fully documented UML diagram.

[0249] A user (a human or other type of user) may use a
virtual implementation as the meta-implementation layer in
the same way that it uses accessors. Since the meta-imple-
mentation serves as a layer of indirection between the user
and the implementation, the user is completely unaware of
the differences between an accessor and a virtual implemen-
tation.

[0250] A virtual implementation of the present invention
takes a step toward the goal of a computer being able to
modify its own programming. Normally, artificial intelli-
gence is created in a neural network, genetic algorithm, or
logic-based program. In every case, the computer is able to
apply logic to “reason” out a result or create patterns of input
that lead to patterns of output. While each of these programs
allows the computer to construct new patterns, genes, or
logic, none of these environments allow the computer to
understand how to change the surrounding environment.



